Lecture 19

Gidon Rosalki

2025-01-05

1 Network flow 4 - Ford Fulkerson

1.0.1 Extensions of a network flow

Let there be N=(V,E,c,s,t) a normal network flow. Its extension will be N'=(V,c',s,t), where $c':V\times V\to\mathbb{R}^+$ is the extended capacity function defined as follows:

$$c'\left(x,y\right) = \begin{cases} c\left(x,y\right), & \text{if } \left(x,y\right) \in E\\ 0, & \text{if } \left(x,y\right) \notin E \end{cases}$$

Let there be N = (V, E, c, s, t) a regular network flow, and $f : E \to \mathbb{R}^+$ a regular correct flow that enables the requirement that **there is no flow between two antiparallel edges**. The extension f' of f will be the function $f' : V \times V \to \mathbb{R}$, defined as follows:

$$f'\left(x,y\right) = \begin{cases} f\left(x,y\right), & \text{if } \left(x,y\right) \in E \land f\left(x,y\right) > 0\\ -f\left(x,y\right), & \text{if } \left(y,x\right) \in E \land f\left(y,x\right) > 0\\ 0, & \text{otherwise} \end{cases}$$

We will note that f' is well defined thanks to this requirement

Let there be N' = (V, c', s, t) an extended network flow. The extended flow f' in this network is the function $f' : V \times V \to \mathbb{R}$ such that the following three requirements are met:

- 1. Anti symmetry: $\forall x, y \in V, f'(x, y) = -f'(y, x)$
- 2. Capacity constraint: $\forall x, y \in V, f'(x, y) \leq c'(x, y)$
- 3. Conservation of mass: $\forall x \in V, \ x \neq s, t, \ \sum_{y \in V} f'(x, y) = 0$

1.0.2 Contraction of a network flow

Let there be N' = (V, c', s, t) an extended network flow. We will define the set of edges $E \subseteq V \times V$ as follows:

$$E = \{(x, y) \in V \times V : c'(x, y) > 0\}$$

We will define the capacity function $c: E \to \mathbb{R}^+$ as follows: c(x,y) = c'(x,y) for every $(x,y) \in E$. We will define N = (V, E, c, s, t) as the contraction of N'.

Theorem 1 (Lemma). Let N be a regular network flow, N' an extension of N, and \overline{N} the contraction of N', then $N = \overline{N}$

1.0.3 Contraction of flow

Let there be N'=(V,c',s,t) an extended network flow, and $f':V\times V\to\mathbb{R}$ be an extended flow in this network. Let N=(V,E,c,s,t) be the contraction of N'. We will define the **contraction of** f' as the function $f:E\to\mathbb{R}^+$ defined as follows for every $(x,y)\in E$:

$$f(x,y) = \max\{f'(x,y), 0\}$$

Theorem 2 (Lemma). Let there be f' will be an extended flow in the extended network flow N', let N be the contraction of N', and f be the contraction of f'. So f is a regular flow in the regular graph N and |f| = |f'|

1.0.4 Residual capacity and residual graph

Let N' = (V, c', s, t) an extended network flow, and $f' : V \times V \to \mathbb{R}$ the extended flow in this network.

Definition 1.1 (Residual capacity). The residual capacity is the function $c_{f'}: V \times V \to \mathbb{R}^+$ defined as follows:

$$\forall x, y \in V \ c_{f_{i}}(x, y) = c'(x, y) - f'(x, y)$$

Definition 1.2 (Residual edges collection).

$$\mathbb{E}_{f'} = \{(x, y) : c_{f'}(x, y) > 0\}$$

Definition 1.3 (Residual graph).

$$G_{f'} = (V, E_{f'})$$

1.0.5 Extended path and remaining flow

Definition 1.4 (Extended path). This is the simplest directed path between s and t in the residual graph

Definition 1.5 (Residual capacity). Let P be the extended path. The **residual capacity** of P is

$$c_{f''}(P) = \min_{e \in P} \{c\}f'(e)\}$$

Definition 1.6 (Residual flow). $\Delta_{f',P}: V \times V \to \mathbb{R}$ defined as follows:

$$\Delta_{f',P}(x,y) = \begin{cases} c_{f'(P)}, & \text{if } (x,y) \in P \\ -c_{f'(P)}, & \text{if } (y,x) \in P \\ 0, & \text{otherwise} \end{cases}$$

1.0.6 Algorithm Ford-Fulkerson for optimal flow in a network

Input: a Normal network flow N = (V, E, c, s, t)

Output: An optimal flow f in N

- 1. **Preprocessing:** Extension: We will extend N to the extended network N'
- 2. Initialisation: f' = 0, $(\forall x, y \in V, f'(x, y) = 0)$
- 3. **Iteration:** We find the extended path P in the residual graph $G_{f'}$, and update $f' = f' + \Delta_{f',P}$
- 4. Stop: When there are no remaining extended paths paths in the residual graph $G_{f'}$, we stop
- 5. Contraction: We contract the extended flow f' to a normal flow f, and return f

1.0.7 Algorithm proof

Theorem 3. We will assume that the input of the algorithm FF is a network with integer capacities. So the algorithm stops after at most

$$\sum_{x \in V} c\left(s, x\right)$$

 $iterations,\ and\ returns\ a\ flow\ with\ whole\ values.$

Theorem 4. If the algorithm FF stops, it returns an optimal flow

Theorem 5 (Conclusion). Under the assumption that the input to FF is a network with integers, the algorithm stops and returns an optimal flow with integer values

Theorem 6 (Lemma 1). Let N' be an extended network flow, and let f' be an extended flow in this network. Let P be the extended path in the residual graph $F_{f'}$, then $g = f' + \Delta_{f',P}$ is the extended flow in the network N', and additionally $|g| = |f'| + c_{f'}(P)$

Proof. We will show that g is a correct extended flow:

1. Antisymmetry: According to the assumption f' enables antisymmetry, and according to the definition $\Delta_{f',P}$ enables antisymmetry. We will take $x, y \in V$:

$$g(x,y) = f'(x,y) + \Delta_{f',P}(x,y)$$

= - (f'(y,x) - \Delta_{f',P}(y,x))
= g(y,x)