Tutorial 10

Gidon Rosalki

2025-01-16

1 Cuts

Definition 1.1 (Cut S,T). In a flow network, a cut is $S,T\subseteq V$ such that $S\cap T=\emptyset \wedge V=S\cup T$. We generally refer to $t\in T\wedge s\in S$.

Theorem 1 (Lemma). For every legal cut and flow it is true that

$$|f| \le c(S,T)$$

$$c(S,T) = \sum_{(u,v) \in (S \times T) \cap E} c(u,v)$$

Proof. In class

Theorem 2 (Conclusion). If we find a flow f, and cut S,T, such that |f| = c(S,T), then f is maximal and (S,T) has minimum capacity

Proof. Proof by contradiction with the lemma

Theorem 3 (Max-flow min-cut). There exists a correct f and a correct cut S, T such that

$$|f| = c(S,T)$$

Theorem 4. Let there be an optimal flow f. Then for every minimum cut in the graph, the edges are saturated.

1.1 The investors and actors problem

Input:

- A placement of the actors $a \in A$ of size n. For every actors there is a salary $s_i \in \mathbb{R}_{>0}$.
- The group of investors $B = \{b_1, \ldots, b_n\}$. Every investor has a subset $A_i \subseteq A$ of players he wants, and if all the actors in A_i will be in a given film, then he will invest d_i

Output: Subsets $A' \subseteq A$, $B' \subseteq B$ such that:

- Correctness: For every $b_i \in B'$ it is true that $A_i \subseteq A'$
- Maximisation: p(A', B') is maximised, where $p(A', B') = \sum_{b_i \in B'} d_i \sum_{a_i \in A'} s_i$

1.1.1 Algorithm

We will build the network such that:

$$V = \{s, t\} \cup A \cup B$$

$$E = E_A \cup E_B \cup E_{AB}$$

$$E_{AB} = \{(b_i, a_j) | a_j \in A_i\}$$

$$E_B = \{(s, b_i) | b_i \in B\}$$

$$E_A = \{(a_j, t) | a_j \in A\}$$

$$c(u, v) = \begin{cases} d_i, & \text{if } (u, v) \in E_B, \ v = b_i \\ s_j, & \text{if } (u, v) \in E_A, \ u = a_j \\ \infty, & \text{if } (u, v) \in E_{AB} \end{cases}$$

Theorem 5. The returned A', B' are correct.

Proof. We will define a one to one, "on" matching between the cut (S,T), and the set (A',B'). Given S,T, we will define $B'=S\cap B,\ A'=S\cap A$. Given A',B' we can define $S=A'\cup B'\cup \{S\}$, and $T=V\setminus S$.

Theorem 6. Given the matching, (S,T) are finite **if and only if** A', B' are correct.

Proof . c(S,T) is finite \Leftrightarrow there does not exist $e \in E_{AB}$ (an edge with infinite capacity) that is cut

- \Leftrightarrow every edge in E_{AB} is either in T or in S
- \Leftrightarrow for every $b_i \in B$ it is true that A_i is located on the same side of the cut
- \Leftrightarrow we have not separated between b_i, A_i when they are located on one of the sides of the cut
- $\Leftrightarrow S \cap B, \ S \cap A$ defines the correct set.

Theorem 7. The minimum cut is finite

Proof. There exists a finite cut (for example $S = \{s\}$, $T = V \setminus S$), with capacity $c(S,T) = \sum_{i=1}^{k} d_i$. The minimum cut is required to have capacity less than or equal to this (since it is minimal), and is therefore finite.

Theorem 8 (Conclusion). According to the previous theorem, A', B' that match the minimum cut are correct

Theorem 9. The returned A', B' are optimal. $p(A', B') = \sum_{b_i \in B'} d_i - \sum_{a_i \in A'} s_i$ is maximal.

- 1. We will prove: c(S,T) = D p(A',B') where D is a constant
- 2. We will prove: C(S,T) is minimal $\implies A',B'$ is maximised

Proof. 1. Let there be (S,T), a finite cut:

$$\begin{split} c\left(S,T\right) &\overset{def}{=} \sum_{(u,v) \in (S \times T) \cap E} c\left(u,v\right) \\ &\overset{\text{Finite cut}}{=} \sum_{b_i \notin S} c\left(S,b_i\right) + \sum_{a_j \in S} c\left(a_j,t\right) \\ &= \sum_{b_i \in B} c\left(s,b_i\right) - \sum_{b_i \in B'} c\left(s,b_i\right) + \sum_{a_j \in A'} c\left(a_j,t\right) \\ &= \sum_{b_i \in B} d_i - \left(\sum_{b_i \in B'} d_i - \sum_{a_j \in A'} s_j\right) \\ &= D - p\left(A',B'\right) \end{split}$$

2. If we assume by contradiction that \widetilde{A} , \widetilde{B} are better than A', B'

$$p\left(\widetilde{A}, \widetilde{B}\right) > p\left(A', B'\right)$$
$$-p\left(\widetilde{A}, \widetilde{B}\right) < -p\left(A', B'\right)$$
$$D - p\left(\widetilde{A}, \widetilde{B}\right) < D - p\left(A', B'\right)$$
$$c\left(\widetilde{S}, \widetilde{T}\right) < c\left(S, T\right)$$

which is a contradiction of the minimality of the cut.

1.1.2 RunTime

1. Build the network:

$$|E| = |E_B| + |E_A| + |E_{AB}|$$

$$= k + n + nk$$

$$= O(nk)$$

$$|V| = n + k + 2$$

$$= O(n + k)$$

- 2. Finding the cut: $O\left(\left|E\right|^{2}\left|V\right|\right)$
- 3. Building the sets: O(|V|)
- 4. Total:

$$O\left(|E|^{2}|V|\right) = O\left(n^{2}k^{2}\left(n+k\right)\right)$$
$$= O\left(n^{3}k^{2} + n^{2}k^{3}\right)$$

From here there was an example of EK (in the video), or FF (in their printed copy)