Tutorial 7 - Approximation algorithms

Gidon Rosalki

2024-12-19

Definition 0.1. Let there be an optimisation problem

$$\max_{x \in X} \left\{ f\left(x\right) \right\}$$

Linear programming: X - polyhedron, $f(x) = C^T x$ - linear function.

For example - MST: X - the collection of all the spreading trees of the graph, f(x) - the weight of the spanning tree.

Definition 0.2 (C-approximation). We will say that an algorithm is a C-approximation of a **maximisation** problem for $C \ge 1$. We will write that the input is X, and the optimal solution is X^* . So the algorithm is a C-approximation if $f(x) \ge \frac{1}{C} f(X^*)$

Similarly, for a minimisation problem: $f(x) \le c \cdot f(X^*)$

1 Max-Cut

Input: An undirected graph G = (V, E).

Definition: a cut in the graph is a splitting of V into 2 sets, A and B, such that $A \cap B = \emptyset \land A \cup B = V$.

Size: The cut is of size the number of edges where one of their nodes are in A, and the other is in B.

Output: A cut of maximum size.

1.0.1 Algorithm 2-approximation

Symbols: $\Gamma(v) \subseteq V$ is the set of neighbours of the nodes v.

- 1. **Preprocessing:** We will number the nodes in some way $V = (v_1, \dots, v_n)$
- 2. **Initialisation:** We will initialise $B = \emptyset$, A = V
- 3. **Iteration:** We will pass over the nodes in the order $1, \ldots, n$, if $v_i \in A \land |\Gamma(v_i) \cap A| > |\Gamma(v_i) \cap B|$ then we will move v_i to B. Similarly, if $v_i \in B \land |\Gamma(v_i) \cap B| > |\Gamma(v_i) \cap A|$ then we will move v_i to A
- 4. End: We will repeat the iterative step until there are no more nodes moved, and then return.

1.0.2 Runtime

Theorem 1. Every time we move a node from one set to the other in the iteration step, we increase the size of the cut by at least 1.

Proof. Let us say that A, B is the cut before we make a change, and A', B' afterwards. We will assume that $v \in A$. So $A' = A \setminus \{v\} \land B' = B \cup \{v\}$.

- 1. O(n), n = |V|, m = |E|
- 2. O(n)
- 3. O(m+n)
- 4. O(m)

So our total runtime is O(m(m+n)).

1.0.3 Correctness

The solution is correct since we start with a correct solution, and every step make a change which does not impact the correctness of the solution.

Reminder:
$$\sum_{v \in V} |\Gamma(v)| = 2m$$
. We shall write $|\Gamma(v)| = d(v)$.

Theorem 2 (2-approximation). We will write that t is the **size** of the cut that is returned by the algorithm. We will write t^* to be the optimal cut size. So $t \ge \frac{1}{2}t^*$

Proof. Let there be A, B, the cut that the algorithm returned.

$$\begin{split} t &= \sum_{v \in A} |\Gamma\left(v\right) \cap B| \\ &= \sum_{v \in B} |\Gamma\left(v\right) \cap A| \\ &= \frac{1}{2} \left(\sum_{v \in A} |\Gamma\left(v\right) \cap B| + \sum_{v \in B} |\Gamma\left(v\right) \cap A| \right) \end{split}$$

Note that from the node $v \in A$, $|\Gamma(v) \cap B| \ge \frac{1}{2} |\Gamma(v)|$ since $d(v) = |\Gamma(v)| = |\Gamma(v) \cap A| + |\Gamma(v) \cap B|$, and according to the algorithm implementation $|\Gamma(v) \cap B| \ge |\Gamma(v) \cap A|$. Therefore:

$$* \ge \frac{1}{2} \left(\sum_{v \in A} \frac{1}{2} d(v) + \sum_{v \in B} \frac{1}{2} d(v) \right)$$

$$= \frac{1}{4} \sum_{v \in V} d(v)$$

$$= \frac{2m}{4}$$

$$= \frac{1}{2} m$$

$$\ge \frac{1}{2} t^*$$

Since the size of the cut cannot rise above the number of edges in the graph.

The best known approximation: Goemans - Williamson, where $\frac{1}{C} = 0.87...$, and finding a better approximation is NP-hard

2 Travelling salesman problem - TSP

Input: A complete undirected graph G = (V, E), and a weight function $\sigma : E \to \mathbb{R}$.

Definition 2.1 (Hamiltonian cycle). A cycle that passes through all the nodes of the graph at most once.

Output: A Hamiltonian cycle of minimum weight.

Assumption: The triangle inequality holds: $\forall v, w, y : \sigma(v, u) \leq \sigma(v, w) + \sigma(w, u)$.

2.0.1 Algorithm 2-approximation

- 1. We find an MST T.
- 2. We will choose some node v_1
- 3. We will run DFS on the tree from v_1 , and number the nodes according to the first time we find them in DFS.
- 4. We will return the cycle $H = (v_1, \ldots, v_n, v_1)$

2.0.2 Runtime

Symbols: n = |V|, m = |E|

- 1. $O(m \log(m))$
- 2. O(1)
- O(n)
- 4. O(1)

So in total, $O(m \log (m))$

Theorem 3 (2-approximation). Let W be the weird of the Hamiltonian cycle that the algorithm returns, and W* the optimal weight. So $W \le 2 \cdot W^*$

Proof. Note that if we remove an edge from the Hamiltonian cycle, then we get a spanning tree.

Let us write H^* to be some optimal cycle, and T^* to be the spanning tree that we get by removing some edge from H^* . We shall note that

$$\sigma\left(T\right) \leq \sigma\left(T^{*}\right) \leq \sigma\left(H^{*}\right)$$

We want to show that $\frac{1}{2}\sigma(H) \leq \sigma(T)$. Therefore if $\sigma(H) \leq 2\sigma(T)$, we have finished. We shall write p to be the **complete walk** of DFS, which is to say we are adding the node v to the list p, both the first time we visit it, and also after we have finished to visit all the of its sub trees. We shall note that $\sigma(p) = 2\sigma(T)$. Therefore it is sufficient to show that $\sigma(H) \leq \sigma(p)$.

$$\sigma(H) \le \sigma(p)$$

$$= 2\sigma(T)$$

$$= \le 2 \cdot \sigma(T^*)$$

$$< 2 \cdot \sigma(H^*)$$

Indeed, H is created from p by removing nodes. For every node, we will leave its first appearance, and remove all others. At every remove, we remove two edges $\{u,v\}$, $\{v,w\}$ and add one edge $\{u,w\}$. From the triangle inequality, the weight of the graph did not increase.